ELECTRONICS LAB REPORT EXPERIMENT (2) <u>RC NETWORKS</u>

	Date:
Name:	Partner's Name:
Registration No:	Registration No:
Physics Section:	Instructor's Name:

DATA AND DATA ANALYSIS

A- Low Pass Filter

1- Connect the circuit shown in *figure 1*. Set up the function generator for maximum sine wave output at a frequency of 20 Hz.

2- Using the digital multi-meter to measure the input voltage V_{in} and the output voltage V_o for several frequency values from 20 Hz to 20 kHz.

3- Calculate (*log f*) and V_o/V_{in} and enter your data and calculations in *table 2.1*

4- Plot the voltage ratio V_o/V_{in} as a function of frequency (*log f*). From the plot determine the *cut-off* frequency f_c .

5- Compare your result obtained in part (4) with the value of the frequency obtained by the relation: $f_c = 1/(2\pi RC)$

<u>B- High Pass Filter</u>

1- Connect the circuit shown in *figure 2*.

2- Repeat the procedure outlined in section A for several frequency values from 20 Hz to 20 kHz.

3- Calculate (log f) and V_o/V_{in} and enter your data and calculations in table 2.1

4- Plot the voltage ratio V_o/V_{in} as a function of frequency (log f). From the plot determine the cut-off frequency f_c .

5- Compare your result obtained in part (4) with the value of the frequency obtained by the relation: $f_c = 1/(2\pi RC)$

Table 2.1

f(Hz)	log f	Low Pass Filter			High Pass Filter		
		$V_i(Volt)$	$V_o(Volt)$	V _o /V _{in}	$V_i(Volt)$	$V_o(Volt)$	V _o /V _{in}
20							
60							
100							
200							
400							
600							
800							
1000							
2000							
4000							
7000							
10000							
13000							
16000							
20000							

<u>C- Phase Shift Network</u>

1- Connect the circuit as shown in *figure 3*.

2- Set up the controls of the oscilloscope to display a Lissajous pattern. Vary the frequency of the function generator until the phase difference between the input voltage V_i and the output voltage V_o is 180 degrees. This occurs when the pattern is a straight line with negative slope. Record the frequency f_{exp} , and V_i and V_0 at this frequency. Compare this frequency with the theoretically calculated one using the relation: $f_{th} = 1/(2\pi RC\sqrt{6})$.

3- Determine the experimental attenuation factor given as: $K_{exp} = V_0/V_{in}$, and compare it with the theoretical value $K_{th} = 1/29$.

Questions:-

1-The circuits of *figure 1* and *figure 2* are called low pass and high pass filter, respectively. Why is this so? For what purpose can such circuits be employed?

2-Show that the frequency f_c at which the voltage ratio V_o/V_{in} is equal to $(1/\sqrt{2})$ is given by the relation: $f_c=1/(2\pi RC)$. For the low pass filter circuit shown in *figure 1* and for the high pass filter circuit shown in *figure 2*.