ELECTRONICS LAB REPORT EXPERIMENT (1) <u>MEASUREMENTS</u>

	Date:
Name:	Partner's Name:
Registration No:	Registration No:
Physics Section:	Instructor's Name:

DATA AND DATA ANALYSIS

A- Waveform Voltage Measurement

1- Set the function generator controls to produce a sinwave output at 1.0 kHz frequency. Adjust the oscilloscope setting using the *x*, *y*-shift, Volt/cm sensitivity switch, Time/cm timebase switch, stability and trigger level to obtain a clear and stable waveform on the screen. For one amplitude setting of the function generator, measure the peak to peak height (**h**) of the waveform for five different scale settings of the Volt/cm, switch (**K**_v), and record your measurements in table (1.1).

2- Using $V = K_v h$ to convert the data obtained to peak to peak voltage V_{pp} and enter your data and results in table (1.1).

Voltage scale K _v (Volt/cm)	Wavevoltage Height h (cm)	Peak to peak Voltage V _{pp} = K _v h (V)	Amplitude Voltage V _p (V)

Table (1.1)

3- Are the peak to peak values equal? Explain.

4- Determine the amplitude of the waveform.

B-Waveform Frequency Measurement

1- Set the time base at calibration position or at extreme counterclockwise position, and set the *x*-gain control at extreme counterclockwise position. For five different frequency settings of the function generator, measure and record the horizontal distance (L) between two successive peaks of the displayed waveform, and record the results in table (1.2).

2- Using the time base (*Time/cm*) setting K_h for each frequency, convert the data obtained to frequency values and enter your data and results in table (1.2), using the relation $f = (1 / \tau) = 1 / (K_h L)$.

Generator frequency (<i>Hz</i>)	Distance (L) between two peaks (cm)	K _h = Time/cm	Calculated Frequency: $f = 1/(K_h L)$ (Hz)

<i>Table</i> (1.2)	ble (1.2)
--------------------	-----------

3- Compare the calculated frequency values with the actual values obtained from the function generator.

<u>C-Frequency Measurement Using Lissajous Patterns</u>

1- Record the frequency of the waveform applied to the horizontal input f_h , the number of vertical maxima n_v and the number of horizontal maxima n_h .

2- Using the relation $f_v = (n_v/n_h) f_h$, Calculate the vertical frequency f_v and enter your data and results in table (1.3).

Horizontal Frequency f _h (Hz)	Number of Horizontal maxima (n _h)	Number of Vertical maxima (n _v)	Calculated $f_{v} = (n_{v}/n_{h}) f_{h}$ (Hz)	Generator Frequency <i>f_v</i> (<i>Hz</i>)

Table (1.3)

3- Compare the calculated vertical frequency values with the actual values obtained from the function generator.

D- Phase Measurement Using Lissajous Method

1- Connect the circuit shown in figure 1.

2- Measure the heights A and B of the pattern as shown in figure 2, for different values of the resistance R.

3- Calculate the phase shift $\boldsymbol{\Phi}$ using the two relations:-

 $\Phi = \sin^{-1} B/A$ $\Phi = \tan^{-1} 1/(2\pi f R C)$

5- Compare the values of the phase shift obtained by the two methods.

6- Write down the parameters affected the values of the phase shift $\boldsymbol{\Phi}$.