ELECTRONICS LAB REPORT EXPERIMENT (4) <u>DIODE AND TRANSISTOR</u> <u>CHARACTERISTICS</u>

	Date:
Name:	Partner's Name:
Registration No:	Registration No:
Physics Section:	Instructor's Name:

DATA AND DATA ANALYSIS

1st. DIODE CHARACTERISTICS

1- Connect the circuit shown in *figure 1*.

Fig. 1

2- Measure the current *I* versus forwared voltage *V*. Enter your data in *Table 4.1*

1 able (4.1)														
Power supply voltage (V)	0.2	0.4	0.6	0.8	1	2	3	4	5	6	7	8	9	10
Forward voltage (V)														
Current (mA)														

3- Reverse the diode connections and measure the current *I* versus reverse voltage *V*. Enter your data in *Table 4.2*

Power supply voltage (V)	2	4	6	8	10	12	14	16	18	20	22	24
Reverse voltage (V)												
Current (µA)												

Table (4.2)

- 4- Plot agraph for the current I versus voltage V for both of the two regions (forward biase and reverse biase) on the same sheet of graph paper.
- 5- From the graph determine the forward voltage at which the diode begins to conduct.

The forward voltage =

6- Determine whether the diode is a silicon or germanium diode.

B. TRANSISTOR CHARACTERISTICS

1- Connect the circuit shown in *figure 2*.

Fig. 2

2- For a base current $I_B = 0$, take a set of readings of I_C versus V_{CE} . Repeat for $I_B = 20, 40, 60, 80$ and $100 \ \mu A$. Inter your values in table 4.3

V _{CE}	I _C (mA)										
(V)	I _B =0 μA	I _B =20 μA	I _B =40 μA	I _B =60 μA	I _B =80 μA	I _B =100 μA					
0.2											
0.4											
0.6											
0.8											
1											
2											
4											
6											
8											
10											
12											
14											
16											
18											
20											

Table (4.3)

- 3- Plot the characteristics of a common emitter *npn* transistor by plotting I_C versus V_{CE} for constant I_{B} .
- 4- From the transistor characteristics obtained determine the common emitter current gain B_{dc} , where $B_{dc} = I_C / I_B$, for $V_{CE} = 6$ Volts and $I_B = 60 \mu A$.

Questions:-

- **1-** Figure 3 shows the collector characteristics curves. Show on the graph the following operation regions in transistor:-
- **a-** cut off region.
- **b-** active region.
- **c-** saturated region.
- **d-** break down region.

Fig. 3

2- Determine I_{B} , I_{C} , I_{E} , V_{BE} , V_{CE} and V_{CB} in the circuit shown in *figure 4*. The transistor has $B_{dc} = 150$.

